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Abstract
In this paper, the potential symmetry method is developed to study systems of
nonlinear diffusion equations. Potential variables of the systems are introduced
through conservation laws; such conservation laws yield equivalent systems-
auxiliary systems of PDEs with the given dependent and potential variables as
new dependent variables. Lie point symmetries of the auxiliary systems which
cannot be projected to the vector fields of the given dependent and independent
variables yield potential symmetries of the systems. Classification for systems
of nonlinear diffusion equations with two and three components is performed.
Symmetry reductions associated with the potential symmetries are presented.

PACS numbers: 44.05.+e, 11.30.Na, 02.30.Jr, 02.20.Tw

1. Introduction

It is well known that the group-theoretic methods based on local symmetries or potential
symmetries are powerful to seek symmetry reductions and group-invariant solutions of
partial differential equations (PDEs) [1–3], to verify whether or not a given system can
be linearized by invertible mappings [1], and to construct conservation laws through Noether’s
theorem [1, 2]. The local symmetries include Lie point symmetries, contact symmetries, Lie
Bäcklund symmetries, conditional symmetries and more generally the generalized conditional
symmetries. The methods associated with those symmetries have been successfully applied
to construct symmetry reductions and exact solutions to a large number of nonlinear PDEs.

Bluman et al [1, 4–6] introduced the concept of potential symmetry (or nonlocal
symmetry) for a PDE system, say R{t, x, �u} in the case that at least one of the PDEs can
be written in a conserved form. If we introduce the potential variables �v for the PDE system
R{t, x, �u} written in a conserved from, as further unknown functions we obtain another system-
auxiliary system, say S{t, x, �u, �v}. A Lie point symmetry of S{t, x, �u, �v} acting on {t, x, �u, �v}
space yields a nonlocal symmetry of the original system R{t, x, �u} if it does not project onto

1751-8113/07/081757+17$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1757

http://dx.doi.org/10.1088/1751-8113/40/8/005
http://stacks.iop.org/JPhysA/40/1757


1758 C Qu

a point symmetry acting on {t, x, �u} space. This kind of nonlocal symmetry which is neither
Lie point symmetry or Lie–Bäcklund symmetry is said to be the potential symmetry.

Recently, the potential symmetries of nonlinear PDEs have been studied in the literatures
from several different points of view. Some new physically interesting solutions which
cannot be obtained within the framework of Lie’s symmetry approach were obtained. Chou
and Qu [8] obtained the potential symmetries and the associated similarity solutions for a
generalized nonlinear diffusion–convection equation; Gandarias [9], Bluman and Yan [10]
obtained a new type of solution to a nonlinear diffusion equation by finding its nonclassical
potential symmetries; Senthivelan and Torrisi [13] discussed potential symmetries of a model
for reacting mixtures and obtained its new solutions. More interestingly, potential symmetries
can be used to construct new conservation laws for some PDEs [11, 12]. But only very few
nonlinear PDEs have been found to admit the potential symmetries. So it is of great interest
to expand the class of nonlinear PDEs with potential symmetries.

In this paper, we discuss the potential symmetries of the systems of nonlinear diffusion
equations

uit =

 n∑

j=1

fij (u1, . . . , un)ujx




x

, i = 1, . . . , n, (1.1)

which has a wide range of physical applications (see [14, 15] and references therein). For
n = 1, its potential symmetries have been discussed by Bluman, Kumei and Reid [4–6],
Akhatov, Gazizov and Ibragimov [7]. They showed that the equation

ut = [f (u)ux]x (1.2)

admits the potential symmetries if and only if

f (u) = 1

u2 + pu + q
exp

(∫ u r

s2 + ps + q
ds

)
.

More generally, this result was further extended to the generalized nonlinear diffusion equation

ut = [f (u)(ux)
n]x. (1.3)

In [8], it was shown that (1.3) admits the potential symmetries if and only if

f (u) = 1

(u2 + pu + q)
3n−1

2

exp

(∫ u r

s2 + ps + q
ds

)
.

Recently, Gandarias [9] and Bluman and Yan [10] applied the nonclassical method to study
the potential symmetries of a nonlinear heat equation and derived some new solutions. A
classification of Lie point symmetries to (1.1) with certain functions fij was performed in
[14, 15].

The potential equations (the equations satisfied by potential variables) of system (1.1) for
some specific diffusion terms have applications in physical sciences and differential geometry.
Let us consider the motion of a space curve in Euclidean geometry governed by

γt = κn, (1.4)

where γ , κ and n are, respectively, the curve vector, the curvature and normal vector
of the curve, which describes the self-induced motion of a superconducting vortex [16].
Alternatively, one may denote the curve in terms of its graph γ = (x, φ(x, t), ψ(x, t)), where
x is a parameter, x ∈ R

1. With the graph, the geometric quantities are computed as follows:

ds = g dx, t = (1, φx, ψx)/g,

n = (− 1
2g2

x,
(
1 + ψ2

x

)
φxx − φxψxψxx,

(
1 + φ2

x

)
ψxx − φxψxφxx

)/
(gg̃),
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b = (φxψxx − ψxφxx,−ψxx, φxx)/g̃,

κ = g̃/g3, τ = φxxψxxx − ψxxφxxx

g̃2
,

g =
√

1 + φ2
x + ψ2

x , g̃ =
√

φ2
xx + ψ2

xx + (φxψxx − ψxφxx)2, (1.5)

where s is the arc length, t, n and b are, respectively, the tangent, normal and binormal vectors,
κ and τ are, respectively, the curvature and torsion of the curve.

Multiplying (1.4), respectively, by n and b, and using expressions (1.5), we obtain

ψxxφt − φxxψt = 0,
(1.6)[(

1 + ψ2
x

)
φxx − φxψxψxx

]
φt +

[(
1 + φ2

x

)
ψxx − φxψxφxx

]
ψt = −g̃2/g2.

Solving system (1.6) for φt and ψt , we obtain the system

φt = φxx

1 + φ2
x + ψ2

x

, ψt = ψxx

1 + φ2
x + ψ2

x

. (1.7)

Setting u = φx, v = ψx , we arrive at the system

ut =
( ux

1 + u2 + v2

)
x
, vt =

( vx

1 + u2 + v2

)
x
, (1.8)

which is a special case of (1.1) with n = 2, f11 = f22 = 1/(1 + u2 + v2), f12 = f21 = 0. It is
noted that system (1.7) is a natural generalization of the curve shortening equation [17]:

φt = φxx

1 + φ2
x

.

This equation was shown to admit generalized conditional symmetries and a number of
interesting solutions [18]. We point that the group-invariant solutions play the crucial role in
the study of asymptotical behaviour and formation of singularities of curves during the curve
motion [17].

The outline of this paper is as follows. In section 2, we consider potential symmetries of
(1.1) with n = 2, f12 = f21 = 0. Similarity reductions to the resulting equations associated
with the potential symmetries are presented in section 3. In section 4, we discuss potential
symmetries of (1.1) with three components, i.e. n = 3, fij = 0, i �= j . Section 5 contains
concluding remarks on this work.

2. Potential symmetries of (1.1) with two components

In this section, we consider the potential symmetries of system (1.1) with n = 2, f12 = f21 = 0,
that is

ut = (f (u, v)ux)x, vt = (g(u, v)vx)x, (2.1)

where fv �= 0, gu �= 0. System (2.1) is the simplest one in (1.1). To determine the potential
symmetries of system (2.1), let us write (2.1) in the potential form

u = φx, φt = f (u, v)ux,
(2.2)

v = ψx, ψt = g(u, v)vx.

We determine transformation groups generated by the vector fields of the form

V = ξ∂x + τ∂t + η1∂u + η2∂v + α∂φ + β∂ψ, (2.3)
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which are admitted by (2.2). The transformations which cannot be projected to the
transformations on {t, x, u, v} then induce potential symmetries of equation (2.1). The
corresponding potential system to (2.1) reads as the system

φt = f (φx, ψx)φxx, ψt = g(φx, ψx)ψxx. (2.4)

It follows from the infinitesimal criterion for invariance of PDEs that (2.2) admits the symmetry
group (2.3) if and only if

V (1)(u − φx)|E = 0, V (1)(φt − f (u, v)ux)|E = 0,
(2.5)

V (1)(v − ψx)|E = 0, V (1)(ψt − g(u, v)vx)|E = 0,

where E denotes the solution set of system (2.2), and

V (1) = V + αx ∂

∂φx

+ βx ∂

∂ψx

+ αt ∂

∂φt

+ βt ∂

∂ψt

+ ηx
1

∂

∂ux

+ ηx
2

∂

∂vx

(2.6)

is the first-order prolongation of (2.3), where αx, βx, αt , βt , ηx
1 and ηx

2 depend on V , and their
expressions can be found in [1–3]. From (2.5), we obtain the determining equations for the
infinitesimals ξ, τ, η1, η2, α and β:

αt − uξt − f (η1,x + uη1,φ + vη1,ψ ) = 0, (2.7a)

αu − uξu + f (τx + uτφ + vτψ) = 0, (2.7b)

αv − uξv = 0, (2.7c)

f (αφ − τt − η1,u + ξx + vξψ) − η2fv − η1fu = 0, (2.7d)

g(αψ − uξψ) − f η1,v = 0, (2.7e)

τv = 0, (2.7f )

f τφ − ξu = 0, (2.7g)

gτψ − ξv = 0, (2.7h)

βt − vξt − g(η2,x + uη2,φ + vη2,ψ ) = 0, (2.7i)

βv − vξv + g(τx + uτφ + vτψ) = 0, (2.7j )

βu − vξu = 0, (2.7k)

f (βφ − vξφ) − gη2,u = 0, (2.7l)

g(βψ − τt − η2,v + ξx + uξφ) − η2gv − η1gu = 0, (2.7m)

τu = 0, (2.7n)

η1 − αx − vαψ − u(αφ − ξx − uξφ − vξψ) = 0, (2.7o)

η2 − βx − uβφ + v(ξx + uξφ + vξψ − βψ) = 0, (2.7p)

αu − uξu − f (τx + uτφ + vτψ) = 0, (2.7q)

αv − vξv − g(τx + uτφ + vτψ) = 0. (2.7r)

To solve system (2.7), we first note that τu = τv = 0, and it follows from (2.7b), (2.7k),
(2.7q), (2.7r) that τx = τφ = τψ = 0. From (2.7g) and (2.7h), we also have

ξu = ξv = 0.
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In view of (2.7b), (2.7c) and (2.7j ), (2.7k), we have

αu = αv = βu = βv = 0.

Solving (2.7o) and (2.7p), one gets

η1 = −ξφu2 − ξψuv + αψv + (αφ − ξx)u + αx,
(2.8)

η2 = −ξφuv − ξψv2 + βφu + (βψ − ξx)v + βx.

Substituting (2.8) into (2.7e) and (2.7l), we arrive at f = g, otherwise f does not depend
on v, or g does not depend on u. This contradicts our assumption: fv �= 0 and gu �= 0. To
proceed, we consider the following cases:

Case 1. ξt �= 0. From (2.7a) and (2.7i), we obtain

f = (αt − ξtu)[−ξφφu3 − 2ξφψu2v + (αφφ − 2ξxφ)u2 − ξψψuv2

+ αψψv2 + 2(αφψ − ξxψ)uv + 2αxψv + (2αxφ − ξxx)u + αxx]−1,

g = (βt − ξtv)[−ξφφu2v − 2ξφψuv2 − ξψψv3 + βφφu2 + 2(βφψ − ξxφ)uv

+ (βψψ − 2ξxψ)v2 + 2βxφu + (2βxψ − ξxx)v + βxx]−1.

It follows from the representations for f and g, and noting that f = g, we deduce

f = g = [a1u
2 + 2b1uv + c1v

2 + 2a2u + 2b2v + c2]−1, (2.9)

where ai, bi and ci, i = 1, 2 are some constants.
After the suitable translation, dilatation or rotation for u and v, f = g is reduced to one

of the followings:
For |a1| + |b1| + |c1| �= 0, b2

1 − a1c1 �= 0.

f = g = [u2 ± v2 + a]−1, a = Const. (2.10)

For a1 = b1 = c1 = 0.

f = g = (u + v)−1. (2.11)

For |a1| + |b1| + |c1| �= 0, b2
1 − a1c1 = 0, I = 0.

f = g = [(u + v)2 + a]−1, a = Const, (2.12)

where

I =
∣∣∣∣∣∣
a1 b1 a2

b1 c1 b2

a2 b2 c2

∣∣∣∣∣∣ .
For |a1| + |b1| + |c1| �= 0, b2

1 − a1c1 = 0, I �= 0.

f = g = (u2 + v)−1. (2.13)

Case 2. ξt = 0, αt �= 0, βt �= 0. Using (2.7a) and (2.7i), we deduce

f = αt [−ξφφu3 − 2ξφψu2v + (αφφ − 2ξxφ)u2 − ξψψuv2

+ αψψv2 + 2(αφψ − ξxψ)uv + 2αxψv + (2αxφ − ξxx)u + αxx]−1,

g = βt [−ξφφu2v − 2ξφψuv2 − ξψψv3 + βφφu2 + 2(βφψ − ξxφ)uv

+ (βψψ − 2ξxψ)v2 + 2βxφu + (2βxψ − ξxx)v + βxx]−1.

Noting f = g, and that the coefficients of u3, uv2 and v2u in f and that of v3, uv2 and v2u in
g, we must have

ξφφ = ξψψ = ξφψ = 0,
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which implies that f and g are given by (2.9).

Case 3. ξt = 0, αt �= 0, βt = 0. It follows from (2.7a) and (2.7i) that f is given by

f = αt [−ξφφu3 − 2ξφψu2v + (αφφ − 2ξxφ)u2 − ξψψuv2

+ αψψv2 + 2(αφψ − ξxψ)uv + 2αxψv + (2αxφ − ξxx)u + αxx]−1, (2.14)

and the infinitesimals ξ , φ and ψ satisfy

−ξφφu2v − 2ξφψuv2 − ξψψv3 + βφφu2 + 2(βφψ − ξxφ)uv

+ (βψψ − 2ξxψ)v2 + 2βxφu + (2βxψ − ξxx)v + βxx = 0. (2.15)

It implies that ξ must satisfy

ξφφ = ξψψ = ξφψ = 0.

Thus (2.14) implies that f and g are given by (2.9).

Case 4. ξt = 0, αt = 0, βt �= 0. The analysis for this case is the same as for the case (3), and
we arrive at the same result.

Case 5. αt = ξt = βt = 0. Substituting (2.8) into (2.7a), (2.7i) and (2.7d), we obtain

−ξφφu3 − 2ξφψu2v − ξψψuv2 + (αφφ − 2ξxφ)u2 + αψψv2 + 2(αφψ − ξxψ)uv

+ 2αxψv + (2αxφ − ξxx)u + αxx = 0,

− ξφφu2v − 2ξφψuv2 − ξψψv3 + βφφu2 + 2(βφψ − ξxφ)uv

+ (βψψ − 2ξxψ)v2 + 2βxφu + (2βxψ − ξxx)v + βxx = 0.

Noting that α, β and ξ do not depend on u and v, we arrive at

ξφφ = ξφψ = αφφ − 2ξxφ = ξψψ = αψψ = 0,

αφψ − ξxψ = αxψ = 2αxφ − ξxx = αxx = 0,
(2.16)

βφφ = βφψ − ξxφ = βψψ − 2ξxψ = 0,

βxφ = 2βxψ − ξxx = βxx = 0.

It follows from (2.7d) that f satisfies

[−ξφu2 − ξψuv + αψv + (αφ − ξx)u + αx]fu +
(2.17)

[−ξφuv − ξψv2 + βφu + (βψ − ξx)v + βx]fv + (2ξφu + 2ξψv + 2ξx − τt )f = 0.

Noting that system (2.3) is invariant under the transformations

ũ = u + ε1, ṽ = v + ε2, φ̃ = φ + ε1x, ψ̃ = ψ + ε2x.

Solving system (2.16) and using (2.17), we obtain the infinitesimals given by

ξ = aφ + bψ, τ = ct, α = Ax + Bφ + Cψ,

β = Jx + Kφ + Lψ, η1 = A + Bu + Cv − au2 − buv,

η2 = J + Ku + Lv − auv − bv2.

Thus, we have proved the following result.

Theorem 2.1. System (2.1) admits the potential symmetries if and only if f = g is given by
(2.10)–(2.13) or f = g satisfies the following first-order PDE:

(A + Bu + Cv − au2 − buv)fu + (J + Ku + Lv − auv − bv2)fv

= (2au + 2bv − c)f (2.18)
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up to the translation and dilatation for u and v. The corresponding vector fields of Lie point
symmetries to (2.2) with (2.10)–(2.13) and (2.18) are given as follows. For f given by (2.10)
with a �= 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

V5 = φ∂x − ax∂φ − uv∂v − (a + u2)∂u,

V6 = ψ∂x ∓ ax∂ψ − uv∂u ∓ (a ± v2)∂v, (2.19)

V7 = ψ∂φ ∓ φ∂ψ + v∂u ∓ u∂v,

V8 = 2t∂t + x∂x + φ∂φ + ψ∂ψ.

For f given by (2.10) with a = 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

X5 = φ∂x − uv∂v − u2∂u,

X6 = ψ∂x − uv∂u − v2∂v,

V7 = ψ∂φ ∓ φ∂ψ + v∂u ∓ u∂v, (2.20)

V8 = 2t∂t + x∂x + φ∂φ + ψ∂ψ,

V9 = v∂v + u∂u − x∂x,

V10 = (φ2 ± ψ2 + 2t)∂x − 2(uφ ± vψ)(u∂u + v∂v).

For f given by (2.11),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

W1 = t∂t + x∂x − u∂u − v∂v,

V8 = 2t∂t + x∂x + φ∂φ + ψ∂ψ, (2.21)

W2 = x(u + v)(∂u − ∂v) + x(φ + ψ)(∂φ − ∂ψ) + (φ + ψ)(∂u − ∂v) + 2t (∂φ − ∂ψ),

W3 = ∂u − ∂v + x(∂φ − ∂ψ).

For f given by (2.12) with a �= 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

V8 = 2t∂t + x∂x + φ∂φ + ψ∂ψ,

W3 = ∂u − ∂v + x(∂φ − ∂ψ), (2.22)

W4 = (φ + ψ)(∂φ − ∂ψ) + (u + v)(∂u − ∂v),

W5 = −(u + v)(u∂u + v∂v) +
a

2
(∂u + ∂v) − a

2
x(∂φ + ∂ψ).

For f given by (2.12) with a = 0, the symmetries of (2.2) are

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

V8 = 2t∂t + x∂x + φ∂φ + ψ∂ψ,

W3 = ∂u − ∂v + x(∂φ − ∂ψ),

W6 = x∂x − u∂u − v∂v, (2.23)

W7 = t2∂t − (
1
4λ2 + 1

2 t
)
x∂x +

[
tλ − (

1
4λ2 + 1

2 t
)
φ
]
∂φ +

[
tλ − (

1
4λ2 + 1

2 t
)
ψ

]
∂ψ

+
(

3
2 t + 1

2λ(φ + ψ) + 1
4λ2 + 1

2xλv
)
(u + v)(∂u + ∂v),

W8 = χ∂x − (u + v)χλ(u∂u + v∂v),

W9 = κ(∂φ − ∂ψ) + κλ(u∂u − v∂v),

where χ and κ are the functions of t and λ = φ + ψ , and they satisfy the heat equation
ht = hλλ. Noting that χ and κ in (2.23) satisfy the heat equation, so the system admits an
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infinite-dimensional symmetry groups. According to the theory of invertible mapping between
linear and nonlinear equations [1], the system can be linearized. Indeed setting w = u + v,
then w satisfies the following nonlinear diffusion equation:

wt = (w−2wx)x. (2.24)

It can be linearized by a hodograph transformation.
For f given by (2.13),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

W10 = x∂x − ψ∂ψ − u∂u − 2v∂v,

W11 = x∂φ − 2φ∂ψ + ∂u − 2u∂v, (2.25)

W12 = 2t∂t + u∂u + 2v∂v + φ∂φ + 2ψ∂ψ,

W13 = −2φ∂x + ψ∂φ + (v + 2u2)∂u + 2uv∂v.

For f satisfying (2.18),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ,

V8 = φ∂φ + ψ∂ψ + x∂x + 2t∂t .

V11 = (aφ + bψ)∂x + ct∂t + (Ax + Bφ + Cψ)∂φ + (Jx + Kφ + Lψ)∂ψ

+ (A + Bu + Cv − au2 − buv)∂u + (J + Ku + Lv − auv − bv2)∂v.

It is worth noting that V5, V6, X5, X6, V10 and V11 are potential symmetries of (2.1) since
they cannot be projected to the vector fields on {t, x, u, v} space. So those vectors cannot be
obtained from the Lie point symmetry method. It is interesting to compare the result with that
for the single nonlinear diffusion equation, i.e. system (1.1) with n = 1 [1].

It seems impossible to derive all solutions of the first-order PDE (2.18). But in the case
of a = K = 0, with loss of generality we put L = 0 by the translation for v, we obtain its
special solutions given as follows:

(1) J = µ2, B �= ±µ.

f = g = (µ2 − v2)−1

(
µ − v

µ + v

) c
2µ

f̃ (λ),

with

λ =
u + A+CB

B2−µ2 v + AB+Cµ2

B2−µ2

(µ2 − v2)
1
2
(

µ+a

µ−v

) B
2µ

,

where and hereafter f̃ is an arbitrary function of the indicated variable.
(2) J = µ2, B = µ.

f = g = (µ2 − v2)−1

(
µ − v

µ + v

) c
2µ

f̃ (λ),

with

λ = 2µu + A − µC

2µ(v + µ)
− A + µC

4µ2
ln

v + µ

v − µ
.

(3) J = µ2, B = −µ.

f = g = (µ2 − v2)−1

(
µ − v

µ + v

) c
2µ

f̃ (λ),

with

λ = 2µu − A − µC

2µ(v − µ)
+

A − µC

4µ2
ln

v + µ

v − µ
.
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(4) J = −µ2.

f = g = e
c
µ

arctan v
µ

µ2 + v2
f̃ (λ),

with

λ =
u + A+CB

B2+µ2 v + AB−Cµ2

B2+µ2

(µ2 + v2)
1
2

e
B
µ

arctan v
µ .

(5) J = 0, B �= 0.

f = g = 1

v2
e− c

v f̃ (λ),

with

λ = B2u + (A + BC)v + AB

B2ve
B
v

.

(6) J = 0, B = 0.

f = g = 1

v2
e− c

v f̃ (λ),

with

λ = 2uv − 2Cv − A

2v2
.

(7) A = B = C = J = K = L = 0.

f = g = u−2 e− c
au+bv f̃

(v

u

)
.

(8) a, b �= 0, C = B = L = 0, C + K = 0, A = −aµ, J = −bµ.

f = g = 1

u2 + v2 + µ
.

(9) a, b, c �= 0, B = L = c/4, C + K = 0, A = J = 0.

f = g = 1

u2 + v2
.

The last two cases are included in (2.10).

3. Symmetry reductions of systems (2.2) with (2.10)

In this section, we study symmetry reductions of system (2.10) in terms of the symmetries
(2.19) and (2.20). To obtain non-equivalent symmetry reductions of the systems, one needs
to construct an optimal system for the symmetry groups admitted by the systems. There are
several ways to construct the optimal system for a given Lie group; discussion on this topic
can be found in [2, 3, 19–21].

First we discuss the symmetry reductions of the system

ut =
( ux

u2 + v2

)
x
, vt =

( vx

u2 + v2

)
x
. (3.1)

By introducing the potential variables, its auxiliary system is

u = φx, φt = ux

u2 + v2
(3.2)

v = ψx, ψt = vx

u2 + v2
.
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One may show that an optimal system for the symmetry algebras of system (3.2) is spanned
by the vector fields

v1 = V9 + c1V8 + c2V7(c1 �= 0), v2 = V9 + c2V7, v3 = V9 + V1 + c1V7,

v4 = V9 − V1 + c1V7, v5 = V9 + V1 + c1V4(c1 � 0), v6 = V9 − V1 + c1V4(c1 � 0),

v7 = V9 + V4, v8 = V9 − V4, v9 = V8 + c1V7, v10 = V8 + X6,

v11 = V8 − X6, v12 = V10 + V1 + c1V7, v13 = V10 − V1 + c1V7, (3.3)

v14 = V10 + c1V7, v15 = V7 + V1, v16 = V7 − V1, v17 = V4 + V1 + c1X5,

v18 = V4 − V1 + c1X5, v19 = V4 + X5, v20 = V4 − V5, v21 = X6 + V1,

v22 = X6 − V1, v23 = X6, v24 = V1, v25 = V2,

where Vi,X5 and X6 are given in (2.20). Note that each vector with the constants c1 or c2

contains infinitely many elements.
For V8 + c1X6 (c1 �= 0), the invariants are

z = x

ψ
− c1

2
ln t, t−

1
2 φ, t−

1
2 ψ,

v

u
,

1

v
− c1

2
ln t.

This leads to the symmetry reduction of (3.2) given by an implicit form

φ = t
1
2 g(z), ψ = t

1
2 h(z), z = x

ψ
− c1

2
ln t,

(3.4)
u = m(z)v, v = 1

c1
2 ln t + f (z)

.

The substitution of (3.4) into (3.2) yields the following system for f (z), g(z), h(z) and m(z):

g′′ − 2g′h′

h
= 1

2
(g − c1g

′)(g′2 + h′2),

h′′ − 2h′2

h
= 1

2
(h − c1h

′)(g′2 + h′2),

m = g′

h′ , f = z +
h

h′ .

For V10 + c2V1 + c1V7(c2 �= 0), the invariants are

z = x − t

c2
[(φ2 + ψ2) + t],

c2

√
u2 + v2

c2 − 2(uφ + vψ)t
,

√
φ2 + ψ2,

arctan
u

v
− c1

c2
t, arctan

ψ

φ
+

c1

c2
t.

This leads to a symmetry reduction of (3.2):

φ = −g(z) cos λ, ψ = g(z) sin λ, λ = c1

c2
t + h(z),

(3.5)

u = sin
[
h(z) + c1

c2
t
]

2
c2

tg(z) sin m(z) + f (z)
, v = cos

[
h(z) + c1

c2
t
]

2
c2

tg(z) sin m(z) + f (z)
.

Substituting (3.5) into (3.2) gives the following system for f (z), g(z), h(z) and m(z):

g′′ − gh′2 = −1

b
g2g′[g′2 + (gh′)2],

gh′′ + 2g′h′ = 1

b
g(c1 − g2h′)[g′2 + (gh′)2],

f = arcsin
g′√

g′2 + (gh′)2
, m = 1√

g′2 + (gh′)2
.
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For V10 + c1V7, the invariants are

z = t,
√

φ2 + ψ2, arctan
u

v
− c1x

φ2 + ψ2 + 2t
,

arctan
ψ

φ
+

c1x

φ2 + ψ2 + 2t
,

1√
u2 + v2

[
1 − 2(uφ + vψ)

φ2 + ψ2 + 2t

]
.

This leads to the symmetry reduction of (3.2)

φ = −g(t) cos λ, ψ = g(t) sin λ, λ = c1x

2t + g2
+ h(t),

u =
sin

[
g(t) − f (t) + c1x

2t+φ2+ψ2

]
2g

2t+g2 sin f (t) + m(t)
, v =

cos
[
g(t) − f (t) + c1x

2t+φ2+ψ2

]
2g

2t+g2 sin f (t) + m(t)
.

The associated group invariant solution to (3.2) is given by

u = c1

2t0

√
2(t0 − t) sin

(
c1x

2t0

)
, v = c1

2t0

√
2(t0 − t) cos

(
c1x

2t0

)
,

φ = −
√

2(t0 − t) cos

(
c1x

2t0

)
, ψ =

√
2(t0 − t) sin

(
c1x

2t0

)
,

where t0 > 0 is a constant.
For V4 + c2V1 + c1X5, (c1, c2 �= 0), the invariants are

z = x − c1

c2
tφ, φ,

1

u
− c1

c2
t, ψ − t

c2
,

v

u
.

This leads to a symmetry reduction of (3.2):

φ = h(z), ψ = t

c2
+ g(z), z = x − c1

c2
tφ

(3.6)
u = 1

c1
c2

t + f (z)
, v = m(z)

c1
c2

t + f (z)
.

The substitution of (3.6) into (3.2) yields the following system for f (z), g(z), h(z) and m(z):

h′′ = −c1

c2
hh′(h′2 + g′2),

g′′ = 1

c2
(1 − c1hg′)(h′2 + g′2),

f = 1

h′ , m = g′

h′ .

One may show that an optimal system of the symmetries of the system

ut =
( ux

1 + u2 + v2

)
x
, vt =

( vx

1 + u2 + v2

)
x

(3.7)

is given by

ω1 = V1, ω2 = V2, ω3 = V1 + c1V2, ω4 = V5,

ω5 = V1 + V5, ω6 = V4 + V5, ω7 = V5 + V1 + c1V4,

ω8 = V8 + c1V5, ω9 = V8 + V2 + c1V5.

(3.8)

We now obtain nontrivial symmetry reductions associated with the elements in the optimal
system (3.8).
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For ω5, invariants are z =
√

x2 + φ2, u, v, arcsin(x/z) − t and ψ . So the group-invariant
solutions are given by

φ = g(z) cos(t + h(z)), x = g(z) sin(t + h(z)), z = ψ,

u = tan(λ + m(z)), v = f (z) sec(λ + m(z)),

where λ = t + h(z), and f (z), g(z), h(z) and m(z) satisfy

g′′ = gh′2, gh′′ + 2g′h′ = g(1 + g′2 + g2h′2),

f (z) = g′√
1 + (zh′)2

, m(z) = zh′√
1 + (zh′)2

.

For ω6, invariants are

z = t,
√

x2 + φ2, arctan
x

φ
− t

v√
1 + u2

, arctan u − t.

We obtain the group-invariant solutions given by

ψ = arcsin
x

g
− h(t), φ = g(z) cos λ, x = g(z) sin λ,

u = −tan[λ + m(z)], v = f (z) sec[λ + m(z)],

where λ = h(t) + ψ , and f (z), g(z), h(z) and m(z) satisfy

g′ = − g

1 + g2
, m = h′ = 0, f = 1

g
.

For ω7, invariants are

z = ψ − c1t,
√

x2 + φ2,
v√

1 + u2
, arcsin

x

φ
− ψ, arctan u + ψ.

So the group-invariant solutions are given by

ψ = z + c1t, φ = g(z) cos λ, x = g(z) sin λ,

u = −tan(λ + m(z)), v = f (z) sec λ, λ = t + h(z).

Substituting it into system (3.7) implies f (z), g(z), h(z) and m(z) satisfying

g′′ − gh′2 = −c1g
′(1 + g′2 + (gh′)2),

gh′′ + 2g′h′ = g(1 − c1h
′)(1 + g′2 + (gh′)2),

f (z) = 1√
g′2 + (gh′)2

, m(z) = arccos
gh′√

g′2 + (gh′)2
.

For ω8, invariants are

z = ψt−
1
2 ,

√
x2 + φ2

t
, arctan

x

φ
− c2

2
ln t,

v√
1 + u2

, arctan
u

c1
+

t

2
.

So the group-invariant solutions are given by

φ = t
1
2 g(z) cos λ, x = t

1
2 g(z) sin λ,

u = −tan[λ + m(z)], v = f (z) sec[λ + m(z)],

where λ = h(z) + c1
2 ln t, f (z), g(z), h(z) and m(z) satisfy

g′′ − gh′2 = −(g + zg′)(1 + g′2 + (gh′)2),

gh′′ + 2g′h′ = −(c1 + zh′)(1 + g′2 + (gh′)2),

f = 1√
g′2 + (gh′)2

, m = −arcsin
g′√

g′2 + (gh′)2
.
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Finally for ω9, invariants are

z = ψ

t
1
2

,

√
(x̃2 + φ̃2)

t
, arctan u +

1

2
ln t,

v√
1 + u2

, arctan
φ̃

x̃
+

c1

2
ln[x̃2 + φ̃2],

where x̃ = x − c1/(1 + c1
2), φ̃ = φ + 1/(1 + c1

2). So the group-invariant solutions are given
by

φ = − 1

1 + c1
2

+
√

tg(z) sin λ, x = c1

1 + c1
2

+
√

tg(z) cos λ,

u = tan[λ + m(z)], v = f (z) sec[λ + m(z)],

where λ = h(z) − (c1/2) ln t − c1 ln g(z), and f (z), g(z), h(z) and m(z) satisfy

g′′ = 1

2
(g − zg′)[1 + g′2 + (gh′ − c1g

′)2],

gh′′ + g′h′ + g′ = −1

2
zgh′[1 + g′2 + (gh′ − c1g

′)2],

f = 1√
g′2 + (gh′ − c1g′)2

, m = arcsin
gh′ − c1g

′√
g′2 − c1g′2 .

4. Potential symmetries of (1.1) with three-component equations

In this section, we consider the system

ut = (f (u, v,w)ux)x,

vt = (g(u, v,w)vx)x, (4.1)

wt = (h(u, v,w)wx)x.

Analogous to one- and two-component case, introducing the potential variables φ, ψ and ρ,
we arrive at the auxiliary system

u = φx, φt = f (u, v,w)ux,

v = ψx, ψt = g(u, v,w)vx, (4.2)

w = ρx, ρt = h(u, v,w)wx.

Similar to the analysis for the two-component case, we arrive at the following result.

Theorem 4.1. System (4.1) admits potential symmetries if and only if f = g = h satisfies

f = g = h = 1

u2 + v2 ± w2 + a
, a = ±1, 0, (4.3)

or

f = g = h = 1

(u + v + w)2 + a
, a = ±1, 0, (4.4)

or

f = g = h = 1

u2 + bv2 + w
, b = ±1, (4.5)

or

f = g = h = 1

u2 + v + w
, (4.6)

or

f = g = h = 1

u + v + w
, (4.7)
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or f = g = h satisfies the following equation:

[A + Bu + Cv + Dw − u(au + bv + cw)]fu + [E + Fu + Gv + Hw − v(au + bv + cw)]fv

+ [J + Ku + Lv + Mw − w(au + bv + cw)]fw

= (2au + 2bv + 2cw − d)f, (4.8)

up to translations and dilatation for u, v and w. The corresponding vector fields of Lie point
symmetries to (4.1) with (4.3)–(4.8) are given as follows. For f = g = h given by (4.3) with
a �= 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

V6 = φ∂x − ax∂φ − uv∂v − uw∂w − (a + u2)∂u,

V7 = ψ∂x − ax∂ψ − uv∂u − vw∂w − (a + v2)∂v,

V8 = ρ∂x ∓ ax∂ρ − uw∂u − vw∂v ∓ (a ± w2)∂w,

V9 = ψ∂φ − φ∂ψ + v∂u − u∂v,

V10 = φ∂ρ ∓ ρ∂φ + u∂w ∓ w∂u,

V11 = ψ∂ρ ∓ ρ∂ψ + v∂w ∓ w∂v,

V12 = φ∂φ + ψ∂ψ + ρ∂ρ + x∂x + 2t∂t .

For f = g = h given by (4.3) with a = 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

X6 = φ∂x − u(u∂u + v∂v + w∂w),

X7 = ψ∂x − v(u∂u + v∂v + w∂w),

V8 = ρ∂x − w(u∂u + v∂v + w∂w),

V9 = ψ∂φ − φ∂ψ + v∂u − u∂v,

V10 = φ∂ρ ∓ ρ∂φ + u∂w ∓ w∂u,

V11 = ψ∂ρ ∓ ρ∂ψ + v∂w ∓ w∂v,

V12 = φ∂φ + ψ∂ψ + ρ∂ρ + x∂x + 2t∂t ,

V13 = u∂u + v∂v + w∂w − x∂x,

V14 = (φ2 + ψ2 ± ρ2 + 2t)∂x − 2(uφ + vψ ± wρ)(u∂u + v∂v + w∂w).

For f = g = h given by (4.4) with a = 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

V6 = x(∂φ − ∂ρ) + ∂u − ∂v,

V7 = x(∂ψ − ∂ρ) + ∂v − ∂w,

V8 = x∂x − u∂u − v∂v − w∂w,

V9 = 2t∂t + x∂x + φ∂φ + ψ∂ψ + ρ∂ρ,

V10 = h1(∂φ − ∂ρ) + µh1,λ(∂u − ∂w),

V11 = h2(∂ψ − ∂ρ) + µh2,λ(∂v − ∂w),

V12 = h3∂x − µh3,λ(u∂u + v∂v + w∂w),

V13 = t∂t − 1
4λ(x∂x + φ∂φ + ψ∂ψ + ρ∂ρ) +

(
1
4λ2 + 1

2 t
)
∂ρ

+ 1
4µ[(xu − φ)∂u + (xv − ψ)∂v + (xw − ρ)∂w],

where and hereafter λ = φ +ψ +ρ,µ = u+v +w. hi, i = 1, 2, 3 are functions of t and λ, and
they satisfy the heat equation hi,t = hi,λλ, where hi,λ denotes the derivative of hi with respect
to λ.
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For f = g = h given by (4.4) with a �= 0,

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

V6 = x(∂φ − ∂ρ) + ∂u − ∂v,

V7 = x(∂ψ − ∂ρ) + ∂v − ∂w,

V8 = 2t∂t + φ∂φ + ψ∂ψ + ρ∂ρ,

V9 = λ(∂φ − ∂ρ) + µ(∂u − ∂w),

V10 = λ(∂ψ − ∂ρ) + µ(∂v − ∂w),

V11 = λ∂x − µ(u∂u + v∂v + w∂w) + aµ∂w.

For f = g = h given by (4.5),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

V6 = 2t∂t + x∂x + φ∂φ + ψ∂ψ + ρ∂ρ,

V7 = x∂ψ − 2bψ∂ρ + ∂v − 2bv∂w,

V8 = ψ∂φ − 1

b
φ∂ψ + v∂u − 1

b
u∂v,

V9 = x∂φ − 2φ∂ρ − 2u∂w + ∂u,

V10 = −2φ∂x + ρ∂φ + (w + 2u2)∂u + 2uv∂v + 2uw∂w,

V11 = ψ∂x − 1

2b
ρ∂ψ − uv∂u −

(
1

2b
w + v2

)
∂v − vw∂w.

For f = g = h given by (4.6),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

V6 = 2t∂t + x∂x + φ∂φ + ψ∂ψ + ρ∂ρ,

V7 = ∂v − ∂w + x(∂ψ − ∂ρ),

V8 = ∂u − 2u∂v + x∂φ − 2φ∂ψ,

V9 = ∂u − 2u∂w + x∂φ − 2φ∂ρ,

V10 = (2u2 + v + w)∂u + 2u(v∂v + w∂w) + (ψ + ρ)(∂φ + ∂ψ) + ψ∂ρ − 2φ∂x,

V11 = (ρ + ψ + 2φu + xv + xw)(∂v − ∂w) + [x(ρ + ψ) + φ2 + 2t](∂ψ − ∂ρ).

V12 = v∂v − v∂w − ψ∂ρ,

V13 = u∂u − x∂x + 2v∂v + 2w∂w + ψ∂ψ + ρ∂ρ.

For f = g = h given by (4.7),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ

V6 = 2t∂t + x∂x + φ∂φ + ψ∂ψ + ρ∂ρ,

V7 = t∂t + x∂x − u∂u − v∂v − w∂w,

V8 = x(∂ψ − ∂ρ) + ∂v − ∂w,

V9 = x(∂φ − ∂ρ) + ∂u − ∂w,

V10 = (xλ + 2t)(∂φ − ∂ρ) + (λ + xµ)(∂u − ∂w),

V11 = (xλ + 2t)(∂ψ − ∂ρ) + (λ + xµ)(∂v − ∂w).

For f = g = h satisfying (4.8),

V1 = ∂t , V2 = ∂x, V3 = ∂φ, V4 = ∂ψ, V5 = ∂ρ,

V12 = φ∂φ + ψ∂ψ + ρ∂p + x∂x + 2t∂t ,
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V15 = (aφ + bψ + cρ)∂x + dt∂t + (Ax + Bφ + Cψ + Dρ)∂φ

+ (Ex + Fφ + Gψ + Hρ)∂ψ + (Jx + Kφ + Lψ + Mp)∂ρ

+ [A + Bu + Cv + Dw − u(au + bv + cw)]∂u

+ [E + Fu + Gv + Hw − v(au + bv + cw)]∂v

+ [J + Ku + Lv + Mw − w(au + bv + cw)]∂w.

5. Concluding remarks

We have shown that systems (2.1) and (4.1) admit the potential symmetries for certain
coefficient functions. A natural question is that whether they admit other types of potential
symmetries. Indeed, there are other different ways to write system (2.1) by introducing
different auxiliary variables. For instance, by introducing one potential variable w, system
(2.1) can be written as

u = wx, wt = f (u, v)ux, vt = (g(u, v)vx)x. (5.1)

Assume that system (5.1) admits the Lie point symmetries

V = ξ∂x + τ∂t + η1∂u + η2∂w + η3∂v, (5.2)

thus the infinitesimals satisfy the following equations:

η1η1,x − ξxxg + ξt + uguη1,w = 0,

η3g
2
v − g2η3,vv − η1gguv − η3,vggv + η1gugv − η3ggvv = 0,

η1,v = η2,v = τw = η2,u = ξw = τx = 0,

ξu = η3,u = η3,w = τv = 0,

f (η2,w − τt + ξx − η1,u) − η1fu − η3fv = 0,

η2,t − f (uη1,w + η1,x) − uξt = 0,

η1 − η2,x − u(η2,w − ξx) = 0,

η1gu + η3gv + g(τt − 2ξx) = 0,

η3(gugv − gguv) − η1gguu − η1,uggu + η1g
2
u = 0,

η3,t = ξ1,v = η3,x = ξ2,u = 0.

It is readily to show that system (2.1) does not admits this kind of potential symmetries.
System (2.1) can also be written as

u = wx, v = hx, wt = f (u, v)ux,

px = w + h, pt = F(u, v),
(5.3)

where f is related to F by f = Fu. So system (5.3) is equivalent to a special case of (2.1).
Let us assume that system (5.3) admits the Lie point symmetries

X = ξ∂x + τ∂t + η1∂u + η2∂w + η3∂v + η4∂h + η5∂p.

We obtain the over-determined system for the infinitesimals by using the infinitesimal criterion
for invariance of PDEs. A detail analysis shows that system (2.1) does not admit the potential
symmetries associated with system (5.3).
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